Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Rev ; 47(4)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37422441

RESUMEN

Bacteriophages are obligate parasites of bacteria characterized by the breadth of hosts that they can infect. This "host range" depends on the genotypes and morphologies of the phage and the bacterial host, but also on the environment in which they are interacting. Understanding phage host range is critical to predicting the impacts of these parasites in their natural host communities and their utility as therapeutic agents, but is also key to predicting how phages evolve and in doing so drive evolutionary change in their host populations, including through movement of genes among unrelated bacterial genomes. Here, we explore the drivers of phage infection and host range from the molecular underpinnings of the phage-host interaction to the ecological context in which they occur. We further evaluate the importance of intrinsic, transient, and environmental drivers shaping phage infection and replication, and discuss how each influences host range over evolutionary time. The host range of phages has great consequences in phage-based application strategies, as well as natural community dynamics, and we therefore highlight both recent developments and key open questions in the field as phage-based therapeutics come back into focus.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Especificidad del Huésped , Bacterias/genética , Evolución Biológica , Genotipo
2.
Plant Dis ; 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221240

RESUMEN

Eruca vesicaria subsp. sativa (Mill.) Thell. (arugula or rocket) is a leafy vegetable originating from the Mediterranean region primarily being sold in bagged salads. From 2014 to 2017, plants (cv. Montana) exhibiting blackened leaf veins and irregular V-shaped chlorotic to necroic lesions at the leaf margins were observed in commercial greenhouses in Flanders, Belgium (Figure S1A). Symptoms started after harvest of the first cut, indicating that leaf injury favours disease development. By the last cut, infections had spread uniformly across the plots, with symptoms advanced to the point where harvesting was no longer profitable. Excised surface-sterilized necrotic leaf tissue and seeds were homogenized in phosphate buffer (PB), followed by dilution plating on Pseudomonas Agar F containing sucrose. After four days at 28°C, bright yellow round, mucoid, convex Xanthomonas-like colonies were obtained, both from leaves and seeds. For confirmation, DNA was extracted from pure cultures after which a partial fragment of gyrB was amplified and sequenced (Holtappels et al. 2022). Amplicons were trimmed to 530 nucleotides (Genbank ON815895-ON815900) according to Parkinson et al. (2007) and compared with the NCBI database. Strain GBBC 3139 shares 100% sequence identity with Xanthomonas campestris pv. campestris (Xcc) type strain LMG 568 and with RKFB 1361-1364, isolated from arugula in Serbia (Prokic et al. 2022). The other isolates from Belgian rocket - GBBC 3036, 3058, 3077, 3217 and 3236 - all have a gyrB sequence 100% identical to that of Xcc strain ICMP 4013, among others. To determine the genetic relatedness to other pathogenic Xc strains, the genomes of GBBC 3077, 3217, 3236 and 3139 were sequenced using a MinION (Nanopore) and non-clonal sequences were submitted to NCBI (BioProject PRJNA967242). Genomes were compared by calculating Average Nucleotide Identity (ANI). This revealed that the Belgian strains cluster together with Xc isolates originating from Brassica crops and separate from strains identified as Xc pv. barbareae, pv. incanae and pv. raphani (Figure S2A). Their designation as pv. campestris is supported by maximum likelihood clustering of concatenated gyrB-avrBs2 sequences (EPPO, 2021; Figure S2B,C). Finally, pathogenicity was verified on five-week-old rocket 'Pronto' plants grown in a commercial potting mix by cutting the leaves along the midrib with scissors dipped into a suspension of 108 cfu/ml of each strain or PB as control (4 plants/strain). Plants were kept in closed polypropylene boxes for 48 hr to support high humidity and facilitate infection. They were then maintained at 25 ± 2 °C. Lesions like those observed on commercial plants developed on the inoculated leaves within one week (Figure S1B). Bacterial colonies reisolated from symptomatic tissue were identified based on gyrB as the strains used for inoculation, thereby fulfilling Koch's postulates. To the best of our knowledge, this is the first report of black rot disease in arugula caused by Xcc in Belgium. Previously, Xcc on arugula has been reported in Argentina, California and Serbia as well (Romero et al. 2008; Rosenthal et al. 2017; Prokic et al. 2022). Arugula being a minor crop in Belgium, challenged by Xcc infections and strong import competition, many growers have abandoned the sector in recent years. Therefore, this study makes a strong case for early detection of disease symptoms and timely application of relevant management strategies in vulnerable crop settings.

3.
Viruses ; 14(9)2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36146756

RESUMEN

Pseudomonas syringae pv. syringae (Pss), the causal agent of citrus blast and black pit lesion of lemon fruit, continues to cause serious damage in citrus production in Tunisia. Faced with the rapid emergence of the disease and the inefficiency of conventional control methods, an alternative strategy based on the use of bacteriophages was pursued in this study. The lytic Pss bacteriophage SoKa was isolated from soil collected from Tunisian citrus orchards. Analysis of the host range showed that SoKa was able to lyse seven other Pss strains. Interestingly, Pseudomonas syringae pv. porri, pathogenic to leek, could also be infected by SoKa. The activity of SoKa was maintained at pH values between 2 and 10, at temperatures between -80 and 37 °C; the phage could resist UV radiation at an intensity of 320 nm up to 40 min. Whole genome sequencing revealed that the Pseudomonas phage SoKa is a novel phage that belongs to the Bifseptvirus genus of the Autographiviridae family. The absence of virulence proteins and lysogeny-associated proteins encoded on the phage genome, its anti-biofilm activity, and the significant reduction of tissue necrosis in different fruit bioassays make SoKa potentially suitable for use in phage biocontrol.


Asunto(s)
Bacteriófagos , Caudovirales , Citrus , Bacteriófagos/genética , Enfermedades de las Plantas , Pseudomonas syringae/genética , Suelo , Túnez
4.
Annu Rev Phytopathol ; 60: 21-42, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35300520

RESUMEN

The most economically important biotic stresses in crop production are caused by fungi, oomycetes, insects, viruses, and bacteria. Often chemical control is still the most commonly used method to manage them. However, the development of resistance in the different pathogens/pests, the putative damage on the natural ecosystem, the toxic residues in the field, and, thus, the contamination of the environment have stimulated the search for saferalternatives such as the use of biological control agents (BCAs). Among BCAs, viruses, a major driver for controlling host populations and evolution, are somewhat underused, mostly because of regulatory hurdles that make the cost of registration of such host-specific BCAs not affordable in comparison with the limited potential market. Here, we provide a comprehensive overview of the state of the art of virus-based BCAs against fungi, bacteria, viruses, and insects, with a specific focus on new approaches that rely on not only the direct biocidal virus component but also the complex ecological interactions between viruses and their hosts that do not necessarily result in direct damage to the host.


Asunto(s)
Agentes de Control Biológico , Virus , Animales , Bacterias , Ecosistema , Hongos , Insectos , Enfermedades de las Plantas , Plantas
5.
Microb Biotechnol ; 15(6): 1762-1782, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35084112

RESUMEN

Xanthomonas campestris pv. campestris (Xcc) is a vascular pathogen that invades the xylem of Brassica crops. Current chemical and antibiotics-based control measures for this bacterium are unsustainable and inefficient. After establishing a representative collection of Xcc strains, we isolated and characterized bacteriophages from two clades of phages to assess their potential in phage-based biocontrol. The most promising phages, FoX2 and FoX6, specifically recognize (lipo) polysaccharides, associated with the wxc gene cluster, on the surface of the bacterial cell wall. Next, we determined and optimized the applicability of FoX2 and FoX6 in an array of complementary bioassays, ranging from seed decontamination to irrigation- and spray-based applications. Here, an irrigation-based application showed promising results. In a final proof-of-concept, a CaCl2 -formulated phage cocktail was shown to control the outbreak of Xcc in the open field. This comprehensive approach illustrates the potential of phage biocontrol of black rot disease in Brassica and serves as a reference for the broader implementation of phage biocontrol in integrated pest management strategies.


Asunto(s)
Bacteriófagos , Brassica , Xanthomonas campestris , Brassica/genética , Brassica/microbiología , Familia de Multigenes , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Xanthomonas campestris/genética
6.
Viruses ; 13(10)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34696512

RESUMEN

Bacterial kiwifruit vine disease (Pseudomonas syringae pv. actinidiae, Psa) and halo blight of bean (P. syringae pv. phaseolicola, Pph) are routinely treated with copper, leading to environmental pollution and bacterial copper resistance. An alternative sustainable control method could be based on bacteriophages, as phage biocontrol offers high specificity and does not result in the spread of toxic residues into the environment or the food chain. In this research, specific phages suitable for phage-based biocontrol strategies effective against Psa and Pph were isolated and characterized. In total, sixteen lytic Pph phage isolates and seven lytic Psa phage isolates were isolated from soil in Piedmont and Veneto in northern Italy. Genome characterization of fifteen selected phages revealed that the isolated Pph phages were highly similar and could be considered as isolates of a novel species, whereas the isolated Psa phages grouped into four distinct clades, two of which represent putative novel species. No lysogeny-, virulence- or toxin-related genes were found in four phages, making them suitable for potential biocontrol purposes. A partial biological characterization including a host range analysis was performed on a representative subset of these isolates. This analysis was a prerequisite to assess their efficacy in greenhouse and in field trials, using different delivery strategies.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Enfermedades de las Plantas/terapia , Pseudomonas syringae/virología , Actinidia/virología , Bacteriófagos/clasificación , Bacteriófagos/genética , Frutas/virología , Especificidad del Huésped , Italia , Lisogenia , Control Biológico de Vectores/métodos , Enfermedades de las Plantas/virología , Virulencia
7.
Antibiotics (Basel) ; 10(5)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062921

RESUMEN

Bacterial leaf blight, which is caused by Xanthomonas axonopodis pv. allii, annually causes significant yield losses to Welsh onion in many producing countries, including Vietnam. In this study, we isolated and characterized lytic phages Φ16, Φ17A and Φ31, specific to X. axonopodis pv. allii and belonging to a new phage species and genus within the Autographiviridae, from four provinces in the Mekong Delta of Vietnam. Moreover, we evaluated their efficacy for the biocontrol of leaf blight in greenhouse and field conditions. When applying the three highly related phages individually or as a three-phage cocktail at 108 PFU/mL in greenhouse conditions, our results show that treatment with Φ31 alone provides higher disease prevention than the two other phages or the phage cocktail. Furthermore, we compared phage concentrations from 105 to 108 and showed optimal disease control at 107 and 108 PFU/mL. Finally, under field conditions, both phage Φ31 alone and the phage cocktail treatments suppressed disease symptoms, which was comparable to the chemical bactericide oxolinic acid (Starner). Phage treatment also significantly improved yield, showing the potential of phage as a biocontrol strategy for managing leaf blight in Welsh onion.

8.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33443212

RESUMEN

Agrobacterium spp. are important plant pathogens that are the causative agents of crown gall or hairy root disease. Their unique infection strategy depends on the delivery of part of their DNA to plant cells. Thanks to this capacity, these phytopathogens became a powerful and indispensable tool for plant genetic engineering and agricultural biotechnology. Although Agrobacterium spp. are standard tools for plant molecular biologists, current laboratory strains have remained unchanged for decades and functional gene analysis of Agrobacterium has been hampered by time-consuming mutation strategies. Here, we developed clustered regularly interspaced short palindromic repeats (CRISPR)-mediated base editing to enable the efficient introduction of targeted point mutations into the genomes of both Agrobacterium tumefaciens and Agrobacterium rhizogenes As an example, we generated EHA105 strains with loss-of-function mutations in recA, which were fully functional for maize (Zea mays) transformation and confirmed the importance of RolB and RolC for hairy root development by A. rhizogenes K599. Our method is highly effective in 9 of 10 colonies after transformation, with edits in at least 80% of the cells. The genomes of EHA105 and K599 were resequenced, and genome-wide off-target analysis was applied to investigate the edited strains after curing of the base editor plasmid. The off-targets present were characteristic of Cas9-independent off-targeting and point to TC motifs as activity hotspots of the cytidine deaminase used. We anticipate that CRISPR-mediated base editing is the start of "engineering the engineer," leading to improved Agrobacterium strains for more efficient plant transformation and gene editing.


Asunto(s)
Agrobacterium/genética , Proteínas Asociadas a CRISPR/genética , Edición Génica/métodos , Agrobacterium tumefaciens/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN de Plantas/genética , Genes de Plantas/genética , Genoma de Planta/genética , Mutagénesis/genética , Mutación/genética , Zea mays/genética
9.
Curr Opin Biotechnol ; 68: 60-71, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33176252

RESUMEN

Bacterial phytopathogens significantly reduce crop yields and hence, pose a threat to the food supply of our increasing world population. In this context, bacteriophages are investigated as potential sustainable biocontrol agents. Here, recent advances in phage biocontrol are reviewed and considered within the framework of integrated plant protection strategies. This shows that understanding the pathogen's biology is crucial to develop a targeted strategy, tailored to individual pathosystems and driven by biotechnological insights. Moreover, the potential synergy of phages in contemporary farming practices based on the Internet of Things is proposed, potentially enabling a timely and cost-efficient treatment of plants at an early stage of the disease. Finally, these prospects are placed in the regulatory context of virus-oriented integrated pest control.


Asunto(s)
Bacteriófagos , Agricultura , Bacterias , Producción de Cultivos
10.
Microorganisms ; 8(11)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182526

RESUMEN

Newly discovered Erwinia amylovora phages PEar1, PEar2, PEar4 and PEar6 were isolated from three different orchards in North Tunisia to study their potential as biocontrol agents. Illumina sequencing revealed that the PEar viruses carry a single-strand DNA genome between 6608 and 6801 nucleotides and belong to the Inoviridae, making them the first described filamentous phages of E. amylovora. Interestingly, phage-infected cells show a decreased swimming and swarming motility and a cocktail of the four phages can significantly reduce infection of E. amylovora in a pear bioassay, potentially making them suitable candidates for phage biocontrol.

11.
Microb Biotechnol ; 13(5): 1428-1445, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32383813

RESUMEN

Bacterial canker is a major disease of Prunus species, such as cherry (Prunus avium). It is caused by Pseudomonas syringae pathovars, including P. syringae pv. syringae (Pss) and P. syringae pv. morsprunorum race 1 (Psm1) and race 2 (Psm2). Concerns over the environmental impact of, and the development of bacterial resistance to, traditional copper controls calls for new approaches to disease management. Bacteriophage-based biocontrol could provide a sustainable and natural alternative approach to combat bacterial pathogens. Therefore, seventy phages were isolated from soil, leaf and bark of cherry trees in six locations in the south east of England. Subsequently, their host range was assessed against strains of Pss, Psm1 and Psm2. While these phages lysed different Pss, Psm and some other P. syringae pathovar isolates, they did not infect beneficial bacteria such as Pseudomonas fluorescens. A subset of thirteen phages were further characterized by genome sequencing, revealing five distinct clades in which the phages could be clustered. No known toxins or lysogeny-associated genes could be identified. Using bioassays, selected phages could effectively reduce disease progression in vivo, both individually and in cocktails, reinforcing their potential as biocontrol agents in agriculture.


Asunto(s)
Bacteriófagos , Prunus avium , Bacteriófagos/genética , Especificidad del Huésped , Enfermedades de las Plantas/prevención & control , Pseudomonas syringae
12.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354127

RESUMEN

The phAPEC6 genome encodes 551 predicted gene products, with the vast majority (83%) of unknown function. Of these, 62 have been identified as virion-associated proteins by mass spectrometry (ESI-MS/MS), including the major capsid protein (Gp225; present in 1620 copies), which shows a HK97 capsid protein-based fold. Cryo-electron microscopy experiments showed that the 350-kbp DNA molecule of Escherichia coli virus phAPEC6 is packaged in at least 15 concentric layers in the phage capsid. A capsid inner body rod is also present, measuring about 91 nm by 18 nm and oriented along the portal axis. In the phAPEC6 contractile tail, 25 hexameric stacked rings can be distinguished, built of the identified tail sheath protein (Gp277). Cryo-EM reconstruction reveals the base of the unique hairy fibers observed during an initial transmission electron microscopy (TEM) analysis. These very unusual filaments are ordered at three annular positions along the contractile sheath, as well as around the capsid, and may be involved in host interaction.


Asunto(s)
Colifagos/ultraestructura , Proteínas Virales/química , Proteínas Virales/metabolismo , Colifagos/genética , Colifagos/metabolismo , Microscopía por Crioelectrón , Tamaño del Genoma , Estructura Molecular , Espectrometría de Masas en Tándem , Empaquetamiento del Genoma Viral , Proteínas Virales/genética , Virión/química , Virión/metabolismo
13.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331264

RESUMEN

The prevalence of Pseudomonas syringae pv. porri (Pspo) in Belgium continues to increase and sustainable treatments for this pathogen remain unavailable. A potentially attractive biocontrol strategy would be the application of bacteriophages. The ideal application strategy of phages in an agricultural setting remains unclear, especially in a field-based production such as for leek plants in Flanders. Therefore, more insight in bacteria-phage interaction is required, along with the evaluation of different application strategies. In this study, we further characterized the infection strategy of two Pspo phages, KIL3b and KIL5. We found that both phages recognize lipopolysaccharide (LPS) moieties on the surface of the bacterium. LPS is an important pathogenicity factor of Pspo. Our data also suggest that KIL5 requires an additional protein in the bacterial cytoplasmatic membrane to efficiently infect its host. Virulence tests showed that this protein also contributes to Pspo virulence. Furthermore, a cocktail of both phages was applied in a seed bioassay. A combination of KIL3b and KIL5 reduced the bacterial concentration 100-fold. However, in vitro Pspo resistance against phage infection developed quite rapidly. However, the impact of this phage resistance might be mitigated as is suggested by the fact that those resistance mutations preferably occur in genes involved in LPS metabolism, and that the virulence of those mutants is possibly reduced. Our data suggest that the phage cocktail has promising potential to lower the prevalence of Pspo and to be integrated in a pest management strategy. Targeted research is needed to further explore the applicability of the phages in combination with other disease control strategies.


Asunto(s)
Bacteriófagos/fisiología , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/patogenicidad , Pseudomonas syringae/virología , Receptores Virales/metabolismo , Bélgica , Prueba de Complementación Genética , Genoma Bacteriano , Genómica , Mutación , Polimorfismo de Nucleótido Simple , Pseudomonas syringae/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virulencia
14.
Phage (New Rochelle) ; 1(2): 87-90, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36147895

RESUMEN

Background: When subjected to phage infection, bacteria can rapidly become resistant by changes in the phage receptors at the bacterial surface. Phages thus require adaptive mechanisms to circumvent this type of resistance. Methods: LUZ7 phage with an altered host range were isolated and analysed for mutations and their effect. Results: We find that Pseudomonas virus LUZ7 has an unusually high number of mutants (0.01-0.1% of the population) that drive host range expansion. Interestingly, all tested mutants have a single D737Y mutation in the tail fiber. This mutation allows the phage to adsorb to P. aeruginosa strains that are not natively recognized by the wild-type phage. Conclusion: The high number and specificity of mutants suggests the presence of an uncharacterized mechanism that drives these mutations. This mechanism enables the phage to better evade host resistance at the surface level and expand its host range in general, a feature that could be valuable in phage therapeutic settings or for phage engineering.

15.
Viruses ; 11(3)2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893844

RESUMEN

In agriculture, the prevention and treatment of bacterial infections represents an increasing challenge. Traditional (chemical) methods have been restricted to ensure public health and to limit the occurrence of resistant strains. Bacteriophages could be a sustainable alternative. A major hurdle towards the commercial implementation of phage-based biocontrol strategies concerns aspects of regulation and intellectual property protection. Within this study, two datasets have been composed to analyze both scientific publications and patent documents and to get an idea on the focus of research and development (R&D) by means of an abstract and claim analysis. A total of 137 papers and 49 patent families were found from searching public databases, with their numbers increasing over time. Within this dataset, the majority of the patent documents were filed by non-profit organizations in Asia. There seems to be a good correlation between the papers and patent documents in terms of targeted bacterial genera. Furthermore, granted patents seem to claim rather broad and cover methods of treatment. This review shows that there is indeed growing publishing and patenting activity concerning phage biocontrol. Targeted research is needed to further stimulate the exploration of phages within integrated pest management strategies and to deal with bacterial infections in crop production.


Asunto(s)
Bacterias/virología , Bacteriófagos/fisiología , Agentes de Control Biológico , Producción de Cultivos , Patentes como Asunto , Asia , Bases de Datos Factuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...